### **4** Resultados

# 4.1. Análise de difração de Raios-X

Após os corpos de prova serem submetidos ao meio contendo  $CO_2$  (ensaio de imersão) por 48 horas, estes foram levados para análise de Raios-X. Esta análise foi realizada para cada temperatura (ambiente, 40 °C, 60 °C e 80°C), sendo 8 corpos de prova por ensaio totalizando 32 cp´s. A finalidade desta análise foi a identificação do filme de carbonato de ferro.

Nas Figuras 20 até 26 são mostrados os resultados por difração de Raios-X onde o pico da esquerda indica a presença do filme de carbonato de ferro e na direita do substrato (Fe).

### 4.1.1. Metal de base



#### 4.1.1.1. Temperatura ambiente



Figura 20: Difratograma de Raios-X para a temperatura ambiente metal de base, (a) X70 fase imersa, (b) X80 fase imersa.

# 4.1.1.2.

Temperatura 40°C





Figura 21: Difratograma de Raios-X para a temperatura 40°C metal de base, (a) X70 fase vapor, (b) X80 fase vapor.

### 4.1.1.3.

# Temperatura 60°C











(d)

Figura 22: Difratograma de Raios-X para a temperatura 60°C metal de base, (a) X70 fase imersa, (b) X70 fase vapor, (c) X80 fase imersa, (d) X80 fase vapor.

### 4.1.1.4. Temperatura 80°C





**(b)** 



Figura 23: Difratograma de Raios-X para a temperatura 80°C metal de base, (a) X70 fase imersa, (b) X70 fase vapor, (c) X80 fase vapor.

## 4.1.2. Junta soldada

## 4.1.2.1.

## Temperatura ambiente



**(a)** 



Figura 24: Difratograma de Raios-X para a temperatura ambiente junta soldada, (a) X70 fase imersa, (b)X80 fase imersa.

### 4.1.2.2.

# Temperatura 60°C



**(b)** 









**(a)** 



Figura 26: Difratograma de Raios-X para a temperatura 80°C junta soldada, (a) X70 fase vapor, (b) X80 fase imersa, (c) X80 fase vapor.

Um resumo das condições que apresentaram a formação do filme está mostrado na Tabela 3:

| Temperatura<br>(°C) | X70MBI | X70JSI | X80MBI | X80JSI | X70MBV | X70JSV | X80MBV | X80JSV |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Ambiente            | Х      | Х      | Х      | Х      |        |        |        |        |
| 40                  |        |        |        |        | Х      |        | Х      |        |
| 60                  | Х      | Х      | Х      |        | Х      | Х      | Х      | Х      |
| 80                  | Х      |        |        | Х      | Х      | Х      | Х      | Х      |

Tabela 3: Resultado da análise de difração de Raios-X

Onde:

MB = Metal de base

JS = Junta soldada

I = Fase submersa

V = Fase vapor

 x = Representa a condição onde os corpos de prova apresentaram o filme de carbonato de ferro.

### 4.2.

### Análise por microscopia eletrônica de varredura

Os corpos de prova que apresentaram o filme de carbonato de ferro na análise de difração de Raios-X como mostrado na tabela 3, foram levados ao microscópio eletrônico de varredura (MEV) para a caracterização morfológica do filme formado.

Os resultados destas imagens são apresentados nas Figuras 27- 33 com observação superficial e lateral na fase imersa e vapor respectivamente.

Nestas imagens podem ser observados a formação de uma camada sobre a superfície do metal. A difração de Raios-X (Figura 20 - 26) confirmou que esta camada é o filme de carbonato de ferro. O filme depositado mostra-se muito poroso e pouco uniforme como pode ser confirmado nas imagens laterais. As imagens capturadas na fase imersa indicam que o filme de carbonato de ferro se forma em toda a superfície do metal. Entretanto, na fase vapor o filme formou-se apenas em certas regiões da superfície. As imagens laterais dos corpos de prova mostraram a pouca concentração deste filme e o leve ataque do metal quando comparado com a fase imersa. As imagens capturadas para a fase imersa dos copos de prova com a junta soldada consistiram tanto no metal de solda como na

zona afetada pelo calor (ZTA), mas nenhuma diferença significativa entre estas duas regiões foi observada.

## 4.2.1.

### Metal de base

4.2.1.1.

### Temperatura ambiente



Figura 27: Imagem do microscópio eletrônico de varredura (MEV) 500X, para o metal de base na temperatura ambiente (a) aço X70 fase imersa - superfície, (b) aço X70 fase imersa - lateral, (c) aço X80 fase vapor - superfície, (d) aço X80 fase vapor - lateral.

### 4.2.1.2.

# Temperatura 40°C



Figura 28: Imagem do microscópio eletrônico de varredura (MEV) 500X, para o metal de base na temperatura 40°C, (a) aço X70 fase vapor - superfície, (b) aço X70 fase vapor - lateral, (c) aço X80 fase vapor - superfície, (d) aço X80 fase vapor - lateral.

## 4.2.1.3.

Temperatura 60°C





Figura 29: Imagem do microscópio eletrônico de varredura (MEV) 500X, para o metal de base na temperatura 60°C (a) aço X70 fase imersa - superfície, (b) aço X70 fase imersa lateral, (c) aço X70 fase vapor - superfície, (d) aço X70 fase vapor - lateral, (e) aço X80 fase imersa - superfície, (f) aço X80 fase imersa - lateral, (g) aço X80 fase vapor superfície, (h) aço X80 fase vapor - lateral.

### 4.2.1.4.

### Temperatura 80°C







Figura 30: Imagem do microscópio eletrônico de varredura (MEV) 500X, para o metal de base na temperatura 60°C (a) aço X70 fase imersa - superfície, (b) aço X70 fase imersa lateral, (c) aço X70 fase vapor - superfície, (d) aço X70 fase vapor - lateral, (e) aço X80 fase vapor - superfície, (f) aço X80 fase vapor - lateral.

# 4.2.2.

Junta soldada

4.2.2.1.

# Temperatura ambiente





Figura 31: Imagem do microscópio eletrônico de varredura (MEV) 500X, para junta soldada na temperatura ambiente (a) aço X70 junta soldada fase imersa - superfície, (b) aço X70 ZTA fase imersa - superfície, (c) aço X70 junta soldada fase imersa - lateral, (d) aço X80 junta soldada fase imersa - superfície, (e) aço X80 ZTA fase imersa - superfície, (f) aço X80 junta soldada fase imersa - lateral.

# 4.2.2.2.

# Temperatura 60°C

| Superfície                    | Lateral                       |
|-------------------------------|-------------------------------|
| X70 junta soldada fase imersa | X70 junta soldada fase imersa |
| <b>Γ</b> ο μm                 |                               |
| (a)                           |                               |
| X70 ZTA fase imersa           |                               |
| 50 μm                         | -<br>50 μm                    |
| (b)                           | (c)                           |





Figura 32: Imagem do microscópio eletrônico de varredura (MEV) 500X, para junta soldada na temperatura 60°C (a) aço X70 junta soldada fase imersa – superfície, (b) aço X70 ZTA fase imersa - superfície, (c) aço X70 junta soldada fase imersa – lateral, (d) aço X70 junta soldada fase vapor – superfície, (e) aço X70 ZTA fase vapor - superfície, (f) aço X70 junta soldada fase imersa – lateral, (g) aço X80 junta soldada fase vapor – superfície, (h) aço X80 ZTA fase vapor - superfície, (i) aço X80 junta soldada fase vapor – lateral.

# 4.2.2.3.

# Temperatura 80°C

| Superfície                                          | Lateral                                                                                                         |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| X70 junta soldada fase vapor                        | X70 junta soldada fase vapor                                                                                    |
| 6 μm                                                |                                                                                                                 |
| X70 ZTA fase vapor                                  | the second se |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 50 μm                                                                                                           |
| (b)                                                 | (c)                                                                                                             |





Figura 33: Imagem do microscópio eletrônico de varredura (MEV) 500X, para junta soldada na temperatura 80°C (a) aço X70 junta soldada fase vapor – superfície, (b) aço X70 ZTA fase vapor - superfície, (c) aço X70 junta soldada fase vapor – lateral, (d) aço X80 junta soldada fase imersa – superfície, (e) aço X80 ZTA fase imersa – superfície, (f) aço X80 junta soldada fase imersa - lateral, (g) aço X80 junta soldada fase vapor – superfície, (i) aço X80 junta soldada fase vapor – superfície, (i) aço X80 junta soldada fase vapor – superfície, (i) aço X80 junta soldada fase vapor – superfície, (i) aço X80 junta soldada fase vapor – superfície, (i) aço X80 junta soldada fase

#### 4.3.

#### Determinação da taxa de corrosão

Nas Tabelas 4 - 5 e Figuras 34 - 35 são apresentadas as taxas de corrosão (Tc) por perda de massa para a fase imersa e fase vapor. Pode-se observar que todos os corpos de prova foram severamente atacados. Entretanto, há uma nítida diferença entre os níveis de ataque, sendo menores na fase vapor e maiores na fase imersa. A curva da Figura 34 indica que existe uma tendência de redução nas taxas de corrosão acima de 40°C, exceto para o aço X80, metal de base e junta soldada. Estes dois últimos tiveram suas taxas de corrosão aumentadas rapidamente após 60°C. As amostras em contato com os vapores da solução apresentaram taxas de corrosão crescentes com a temperatura (Figura 35).

| Temperatura | Taxas de corrosão mm/ano |         |         |         |  |
|-------------|--------------------------|---------|---------|---------|--|
| °C          | X70 MB                   | X70 JS  | X80 MB  | X80 JS  |  |
| 25          | 0,49144                  | 0,8141  | 1,34604 | 1,26091 |  |
| 40          | 1,73327                  | 1,5381  | 1,81458 | 1,84362 |  |
| 60          | 1,82004                  | 1,78962 | 1,82003 | 1,88984 |  |
| 80          | 1,56925                  | 1,66937 | 2,55396 | 2,70724 |  |

Tabela 4: Taxas de corrosão em mm/ano na fase imersa



Figura 34: Taxas de corrosão em mm/ano na fase imersa

| Temperatura | Taxas de corrosão mm/ano |         |         |         |  |  |
|-------------|--------------------------|---------|---------|---------|--|--|
| °C          | <b>X70 MB</b>            | X70 JS  | X80 MB  | X80 JS  |  |  |
| 25          | 0,10793                  | 0,10153 | 0,06764 | 0,09861 |  |  |
| 40          | 0,001168                 | 0,02691 | 0,02897 | 0,03276 |  |  |
| 60          | 0,05159                  | 0,09089 | 0,07946 | 0,1062  |  |  |
| 80          | 0,5101                   | 0,16356 | 0,50398 | 0,81388 |  |  |

Tabela 5: Taxas de corrosão em mm/ano na fase vapor



Figura 35: Taxas de corrosão em mm/ano na fase vapor

### 4.4.

### Análise eletroquímica

### 4.4.1.

#### Curvas de polarização anódicas

As curvas de polarização anódica foram determinadas para cada tipo de aço X70 e X80. Nas figuras 36 e 37 são mostrados os gráficos para o metal de base e para a junta soldada respectivamente a cada temperatura: ambiente, 40 °C, 60 °C e 80°C. As curvas foram obtidas para cada tempo de imersão, isto é no momento da imersão, 2, 24 e 48 horas.

O potencial de corrosão encontrado no início do ensaio foi aproximadamente de -750mV para todas as temperaturas. Destas curvas podemos

observar um comportamento de dissolução ativa, ou seja, existe transferência de íons entre o metal e a solução. Ocorre aumento da corrente com a temperatura até um valor mínimo onde uma taxa constante no processo corrosivo é observada.

# 4.4.1.1.







Figura 36: Curvas de polarização anódica típicas obtidas para a solução 1%NaCl com borbulhamento de CO<sub>2</sub> (99,9%), para todas as temperaturas nos dois aços X70 e X80 para o metal de base. (a)X70, temperatura ambiente, (b)X80, temperatura ambiente (c)X70 40°C, (d)X80, 40°C, (e)X70, 60°C, (f)X80, 60°C, (g)X70, 80°C, (h)X80, 80°C.

### 4.4.1.2.

### Junta soldada





Figura 37: Curvas de polarização anódica típicas obtidas para a solução 1%NaCl com borbulhamento de  $CO_2$  (99,9%), para todas as temperaturas nos dois aços X70 e X80 para a junta do metal. (a)X70, temperatura ambiente, (b)X80, temperatura ambiente (c)X70 40°C, (d)X80, 40°C, (e)X70, 60°C, (f)X80, 60°C, (g)X70, 80°C, (h)X80, 80°C.

### 4.4.2.

### Resistência à polarização linear (RPL)

As Figuras 38 e 39 mostram as curvas da resistência à polarização linear para os aços X70 e X80 metal de base e junta soldada.

### 4.4.2.1.

#### Metal de base

A resistência á polarização (Rp) do metal de base da temperatura ambiente (Figura 38a) mostram valores maiores de Rp desde o momento da imersão até após 48 horas para o aço X70 metal de base, onde suas resistências (330,7 Ohm) apresentam-se maiores que as encontradas nas temperaturas  $40^{\circ}$ C,  $60^{\circ}$ C e  $80^{\circ}$ C no momento da imersão (210,99 Ohm para  $40^{\circ}$ C, 90,95 Ohm para  $60^{\circ}$ C e 178,02 Ohm para  $80^{\circ}$ C).

A diminuição das resistências à polarização significa que as taxas de corrosão aumentam com o tempo de imersão por serem inversamente proporcionais. O aumento das taxas de corrosão significa a aceleração do processo corrosivo.



Figura 38: Curvas da resistência à polarização em solução contendo 1%NaCl com borbulhamento de CO<sub>2</sub> (99,9%), para o aço X70 e X80 metal de base. (a) temperatura ambiente, (b) 40°C, (c) 60°C, (d) 80°C.

### 4.4.2.2.

#### Junta soldada

As resistências à polarização da junta soldada apresentaram valores maiores para a temperatura de 40°C (Figura 39b) no momento da imersão nos aços X70 e X80 (> 1200 Ohm). O aço X70 mostra um patamar constante até as primeiras duas horas de imersão diminuindo rapidamente para os mesmos valores do aço X80 nas 24 horas e 48 horas de imersão.

O aço X70 tem maiores resistências que o aço X80 para 60°C e 80°C (Figuras 39c e 39d respectivamente) no momento da imersão. As resistências à polarização da junta soldada nestas temperaturas têm a mesma ordem de magnitude que o metal de base.

Valores próximos de Rp para o aço X80 a 80°C foram observados para o momento da imersão e 48 horas de imersão (em torno de 80 Ohm).



Figura 39: Curvas da resistência à polarização em solução contendo 1%NaCl com borbulhamento de CO<sub>2</sub> (99,9%), para o aço X70 e X80 junta soldada.

### 4.4.3.

#### Espectroscopia de impedância eletroquímica (EIS)

Nas Figuras 40 e 41 mostram-se os espectros de impedância dos dois aços para o metal de base e junta soldada.

## 4.4.3.1.

### Metal de base

Os diagramas de Nyquist para a temperatura ambiente (Figura 40a e 40b) apresentam um aumento no diâmetro do semicírculo para as duas primeiras horas de imersão o que indica mudanças na cinética eletroquímica do metal neste período, que poderia ser atribuído à formação do filme. Para as seguintes 24 horas e 48 horas de imersão a impedância diminuiu indicado pela diminuição do semicírculo. Este comportamento poderia sugerir que o filme sofre diluição ou torna-se pouco aderente.

Para as seguintes temperaturas 40°C, 60°C e 80°C (Figuras 40c até 40h) a diminuição gradual da impedância é observada com o tempo de imersão.







Figura 40: Gráficos de Nyquist dos aços X70 e X80 em solução de 1%NaCl com Borbulhamento de CO<sub>2</sub> (99,9%), para o metal de base.

# 4.4.3.2.

### Junta soldada

As impedâncias para a temperatura ambiente e 40°C (Figura 41a, 41b, 41c, 41d) mostraram a diminuição das respectivas impedâncias com o tempo de imersão.

Da mesma forma que para o metal de base (temperatura ambiente), um aumento na impedância para o aço X70 junta soldada nas duas primeiras horas de imersão (temperatura de 60°C) foi observado indicando a presença do filme, decrescendo gradualmente para 24 horas e 48 horas de imersão (Figura 41f). Para



a temperatura de 80°C a presença do filme foi observada a 24 horas de imersão para o aço X70 e 48 horas para o aço X80 (Figura 41g, 41h respectivamente).



Figura 41: Gráficos de Nyquist dos aços X70 e X80 em solução de 1%NaCl com borbulhamento de CO<sub>2</sub> (99,9%), para junta soldada.